Icosahedral packing of polymer-tethered nanospheres and stabilization of the gyroid phase.
نویسندگان
چکیده
We present results of simulations that predict the phases formed by the self-assembly of model nanospheres functionalized with a single polymer "tether," including double gyroid, perforated lamella, and crystalline bilayer phases. We show that microphase separation of the immiscible tethers and nanospheres causes confinement of the nanoparticles, which promotes local icosahedral packing that in turn stabilizes the gyroid. We present a new metric for determining the local arrangement of particles based on spherical harmonic "fingerprints," which we use to quantify the extent of icosahedral ordering.
منابع مشابه
Stability of the double gyroid phase to nanoparticle polydispersity in polymer-tethered nanosphere systems†
Recent simulations predict that aggregating nanospheres functionalized with polymer ‘‘tethers’’ can self-assemble to form the double gyroid (DG) phase seen in block copolymer and surfactant systems. Within the struts of the gyroid, the nanoparticles pack in icosahedral motifs, stabilizing the gyroid phase in a small region of the phase diagram. Here, we study the impact of nanoparticle size pol...
متن کاملLocal ordering of polymer-tethered nanospheres and nanorods and the stabilization of the double gyroid phase.
We present results of Brownian dynamics simulations of tethered nanospheres and tethered nanorods. Immiscibility between tether and nanoparticle facilitates microphase separation into the bicontinuous, double gyroid structure (first reported by Iacovella et al. [Phys. Rev. E 75, 040801(R) (2007)] and Horsch et al. [J. Chem. Phys. 125, 184903 (2006)], respectively). We demonstrate the ability of...
متن کاملEffect of nanoparticle polydispersity on the self-assembly of polymer tethered nanospheres.
Recent simulations predict that aggregating nanospheres functionalized with polymer "tethers" can self-assemble to form a cylinder, perforated lamellae, lamellae, and even the double gyroid phase, which are phases also seen in block copolymer and surfactant systems. Nanoparticle size polydispersity is likely to be a characteristic of these systems. If too high, polydispersity may destabilize a ...
متن کاملDirect measurement of interfacial curvature distributions in a bicontinuous block copolymer morphology.
Self-consistent field theory predicts that the complex phase behavior of block copolymers does not originate solely from the interface seeking constant mean curvature as once thought, but instead reflects competing minimization of interfacial tension and packing frustration. To test this prediction, we directly measure interfacial curvature distributions from a 3D image reconstruction of the bi...
متن کاملPhase behavior and complex crystal structures of self-assembled tethered nanoparticle telechelics.
Motivated by growing interest in the self-assembly of nanoparticles for applications such as photonics, organic photovoltaics, and DNA-assisted designer crystals, we explore the phase behavior of tethered spherical nanoparticles. Here, a polymer tether is used to geometrically constrain a pair of nanoparticles creating a tethered nanoparticle "telechelic". Using simulation, we examine how varyi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 75 4 Pt 1 شماره
صفحات -
تاریخ انتشار 2007